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Stem cell and extracellular vesicle therapy in Huntington’s 
disease
Napasiri Putthanbut1,2*, Francesco D'Egidio3*, Jea-Young Lee1

Huntington’s disease (HD) manifests as a debilitating neurodegenerative disorder characterized by a genetic mutation in 
the huntingtin (HTT) gene, leading to motor deficits, cognitive impairments, and psychiatric symptoms. HD's major influence 
on patients' daily living warrants the development of new, safe, and effective treatment strategies beyond symptomatic 
management and disease modification. We systematically explore the preclinical studies and clinical trials focusing on the 
application of cell-based therapy and extracellular vesicle therapy in HD. The review aims to map the current landscape of 
cell and extracellular vesicles (EVs) therapy research, pinpointing the successes in ameliorating disease phenotypes and 
mechanisms, assessing safety and efficacy, and identifying the challenges and limitations encountered. Moreover, we highlight 
significant gaps in knowledge and propose areas for future research, emphasizing the need for more targeted studies to fully 
understand the mechanisms of action in the hope of more effective treatments for HD.

Keywords: Huntington’s disease, Cell therapy, Stem cell therapy, Regenerative medicine, Extracellular vesicles, Exosome

1Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida. 2Department of Medicine, Faculty 
of Medicine Siriraj Hospital, Mahidol University. 3Department of Life, Health and Environmental Sciences, University of L'Aquila

*Co-first authors

Correspondence should be addressed to Jea-Young Lee (jeayoung@usf.edu).

Conditioning Medicine 2023 | Volume 6 | Issue 6 | December 2023

Introduction 
Huntington’s disease (HD) is a progressive neurodegenerative 
disorder manifesting as a triad of motor, cognitive, and 
psychiatric symptoms. It impacts populations worldwide, with 
a prevalence rate of 4 cases per 100,000 individuals. Typically, 
HD emerges in adulthood, with most diagnoses occurring 
between the ages of 35 and 44 (Medina et al., 2022). This 
condition follows an autosomal dominant inheritance pattern 
stemming from a mutation in exon 1 of the huntingtin (HTT) 
gene (Bates et al., 2015). The mutation is characterized by 
an expanded CAG trinucleotide repeat in the HTT gene on 
chromosome 4, leading to the accumulation of an abnormal 
form of the huntingtin protein, known as mutant huntingtin 

(mHTT). The number of CAG repeats is inversely proportional 
to the age at onset and directly correlates with the disease's 
severity (Walker, 2007). Accumulation of mHTT in neurons 
precipitates cellular dysfunction and apoptosis, predominantly 
affecting the striatum and cortex. The disease's pathogenesis 
is marked by disruptions in protein folding and degradation, 
mitochondrial dysfunction, excitotoxicity, and altered gene 
expression (Li and Li, 2004). The symptomatic spectrum of 
HD includes involuntary “chorea” motor actions, learning and 
memory impairments, and psychiatric alterations (Ross and 
Tabrizi, 2011). Despite extensive research, treatments remain 
symptomatic, with no current therapy able to alter the disease's 
progression, highlighting the need for novel therapeutic 

Highlights
This paper presents recent advances in cell- and cell-free regenerative medicine approaches for Huntington’s disease (HD), which 
is a debilitating neurodegenerative disorder with life-threatening motor, cognitive, and psychiatric symptoms. Here, we discuss the 
therapeutic potential of stem cells and their secreted extracellular vesicles. We review the scientific evidence that both stem cells 
and extracellular vesicles capture a novel approach relevant to conditioning medicine, in that their treatment intervention in HD 
may not only retard disease progression but also modify the disease pathology by specifically combating the genetic mutation in 
the huntingtin gene. Hence, we advance the concept that stem cell and extracellular vesicle therapy is a new, safe, and effective 
conditioning medicine strategy for symptomatic management and disease-modification of HD.
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strategies (Frank, 2014).
     This review comprehensively assesses the efficacy and 
safety of cell therapy and extracellular vesicle (EV) therapy in 
HD across preclinical studies and clinical trials (Figure 1). We 
seek to pinpoint research gaps that warrant further investigation, 
guiding future scientific research in this field.

Pathogenesis of HD
Mutant Huntingtin Protein
The pathogenesis of HD is characterized by protein misfolding 
due to a polyglutamine expansion, leading to oligomer 
formation (DiFiglia et al., 1997; Cooper et al., 1998; Hoffner 
et al., 2005; Tabrizi et al., 2020). These oligomers serve as 
precursors for protofibrils and intracellular inclusions. Contrary 
to previous assumptions that mHTT inclusions were the main 
contributors to pathology, recent studies suggest that these 
inclusions may not be directly responsible for cell death (Ross, 
1997; Saudou et al., 1998; Arrasate et al., 2004; Hoffner et al., 
2005; Slow et al., 2005), and might even be protective (Arrasate 
et al., 2004; Nucifora et al., 2012). The current hypothesis 
is that mHTT toxicity could be largely due to N-terminal 
fragments containing the toxic exon 1 of the HTT gene 
produced by proteolytic cleavage of mHTT or CAG length-
dependent aberrant splicing, with the toxicity of oligomers 
potentially reduced by their assembly into larger inclusions 
(Nagai et al., 2007; Takahashi et al., 2008; Lajoie and Snapp, 
2010; Miller et al., 2011; Nucifora et al., 2012; Pieri et al., 
2012; Sahl et al., 2012; Leitman et al., 2013). In animal models 
of HD, polyglutamine-containing N-terminal fragments of 
mHTT accumulate in the brain more rapidly than the full-length 
mHTT (Wang et al., 2008; Castiglioni et al., 2012; The Hd iPsc 
Consortium, 2012).
     Furthermore, evidence suggests that mHTT can be 
transferred between cells through tunneling nanotubes and 
extracellular vesicles, indicating a potential mechanism for 
its propagation within the brain. In vitro models of HD have 
demonstrated that cells can absorb polyglutamine peptides from 
both the culture media and co-cultured cells (Yang et al., 2002; 
Herrera et al., 2011; Costanzo et al., 2013; Monsellier et al., 
2016). A study in Drosophila showed that mHTT is released 
from synaptic terminals and subsequently endocytosed by 

adjacent neurons (Babcock and Ganetzky, 2015). However, 
evidence of intercellular spreading in humans is currently 
limited to post-mortem analyses, with inclusion bodies found in 
the extracellular matrix of striatal transplanted grafts, suggesting 
the release of mHTT by neurons (Cicchetti et al., 2014).

Ubiquitin-Proteasome System
Perturbation of the ubiquitin-proteasome system, which affects 
cellular protein degradation (Lin et al., 2013; Cortes and La 
Spada, 2014), is also found in HD.  Evidence showed that 
mHTT interferes with this system by depleting important 
proteins such as vasolin-containing protein (also known as 
p97), ubiquitin fusion degradation protein, nuclear protein 
localization protein, ubiquitin-specific protease 14, and 
activating transcription 5,  leading to failure in the endoplasmic 
reticulum stress response (D'Egidio et al., 2023). Moreover, 
the accumulation of toxic proteins due to the altered ubiquitin-
proteasome system strengthens the toxicity inside affected 
cells, eventually stressing organelles such as mitochondria, 
thereby elevating oxidative stress. In this view, the induction of 
autophagy, a process facilitating the clearance of damaged or 
unnecessary cellular components, has demonstrated promise in 
reducing HD phenotypes and enhancing the clearance of mHTT 
in animal models (Ravikumar et al., 2004). 

Mitochondria Function
Mitochondrial function is compromised in HD. Analysis of 
post-mortem brain specimens reveals a reduction in ATP 
production in HD human (Browne and Beal, 2004) and mouse 
model brains (Mochel et al., 2012) compared to normal brains. 
Alterations in mitochondrial structure, quantity, and enzymatic 
activity have been documented (Goebel et al., 1978; Gu et al., 
1996; Browne et al., 1997; Kim et al., 2010; Johri et al., 2013). 
Brain imaging studies frequently demonstrate downregulated 
glucose metabolism and upregulated lactate concentration in 
HD patients, suggesting diminished mitochondrial metabolic 
function (Jenkins et al., 1993; Antonini et al., 1996; Feigin 
et al., 2001; Reynolds et al., 2005). Research in HD animal 
models has identified disruptions in mitochondrial mobility, 
both anterograde and retrograde, which blocks mitochondrial 
distribution (Trushina et al., 2004; Orr et al., 2008; Shirendeb et 
al., 2011; Shirendeb et al., 2012). Moreover, the expression of 

Figure 1. HD is a neurodegenerative disorder characterized by motor and cognitive dysfunctions and a shortened lifespan. Novel therapies, 
including cell and extracellular vesicle therapy, can improve HD phenotypes and clinical symptoms, opening a new conditioning medicine 
opportunity for HD treatment.
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peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC-1α), a key regulator of mitochondrial biogenesis, 
is significantly reduced in HD models (Cui et al., 2006; Johri 
et al., 2013). However, impairments of mitochondrial fission 
and fusion have also been observed (Jurcau and Jurcau, 
2023). Moreover, evidence suggests that mHTT disrupts the 
mitochondrial outer membrane, inducing calcium release that 
leads to cell death, and compromises the inner membrane, 
obstructing protein transport (Panov et al., 2002; Choo et al., 
2004; Yano et al., 2014; Yablonska et al., 2019). 

Somatic Instability
In addition to the toxicity of the mHTT protein, the RNA 
associated with HD is also implicated in cellular toxicity. 
Studies in animal models of HD demonstrate neurodegeneration 
even in the absence of CAG repeat translation (Martí, 2016). 
Various animal models featuring knock-in CAG repeats have 
highlighted the toxicity of RNA foci (Li et al., 2008; Hsu et 
al., 2011; Wang et al., 2011). Research involving individuals 
with HD has shown a correlation between CAG repeats and 
disease onset and severity, supporting the idea that CAG repeat 
instability contributes to disease pathogenesis (Swami et al., 
2009; Lee et al., 2019). A predictive model indicates that motor 
symptoms manifest when the CAG repeat count surpasses 
115 units and a significant number of cells become vulnerable 
(Squitieri et al., 2006; Kaplan et al., 2007). The extent of 
somatic instability varies across tissues, with the pattern of 
tissue sensitivity aligning with HD neuropathology (Telenius 
et al., 1993; Aronin et al., 1995; La Spada, 1997; Shelbourne 
et al., 2007). Repeat-associated non-ATG (RAN) translation 
has been observed in the brains of HD patients in a CAG 
repeat-dependent fashion (Bañez-Coronel et al., 2015; Gao et 
al., 2017). However, the impact of monopeptide aggregates 
resulting from this unconventional translation process remains 
to be fully elucidated.

Stem Therapy in HD
Neurons and Other Non-Stem Cells
Neurons primarily harvested from embryonic stem cells (ESCs) 
and neural precursor cells (NPCs) are anticipated to replace 
degenerated striatal neurons in HD transplantation. Delli Carri 

et al. (2013) successfully induced differentiation of human ESCs 
into medium spiny neurons (MSNs), known to be the most 
susceptible type of neurons in HD, and upon transplantation 
into the striatum of quinolinic acid (QA)-lesioned rats, the 
grafted neurons persisted and committed along the DARPP-32 
positive neuronal lineage, integrating with the host brain, 
altogether dampening the apomorphine-mediated rotational 
behavior. Furthermore, McLeod et al. (2013) demonstrated 
that g-aminobutyric acid (GABA)-ergic cells differentiated 
from human NPCs (hNPCs) could significantly improve motor 
and memory deficits following transplantation. Additionally, 
the transplantation of the choroid plexus has shown to confer 
benefits: pig porcine choroid plexus encapsulated in alginate 
microcapsules and grafted into the striatum of QA-lesioned rats, 
reduced weight loss and motor impairment, as well as neural 
loss and striatal atrophy when transplanted prior to QA injection 
(Emerich and Thanos, 2006; Emerich et al., 2006).
Neural Stem Cells (NSCs)
NSCs have garnered significant interest for transplantation 
due to their dual role in neuron replacement and neurotrophic 
factor secretion (Tuazon et al., 2019). The pioneering study 
by Deckel et al. (1983) demonstrated the potential of this 
approach. Indeed, rat fetal striatal tissues transplanted into the 
bilateral striatum of kainic acid (KA1)-injected rats showed 
notably fewer behavioral abnormalities and well-differentiated 
grafts with reduced striatal atrophy. Subsequent research 
predominantly focused on fetal striatal tissue, especially the 
subventricular zone (SVZ), whole ganglionic eminence (WGE), 
medial ganglionic eminence (MGE), and lateral ganglionic 
eminence (LGE), consistently demonstrating the amelioration 
of HD symptoms and robust neural differentiation. NSCs 
derived from ESCs and induced pluripotent stem cells (iPSCs) 
have shown a similar impact across various mouse models of 
HD (Al-Gharaibeh et al., 2017; Holley et al., 2023). However, 
some studies have reported no significant effects from NSC 
transplantation, highlighting the need for further investigation 
into optimal regimens (Hurelbrink et al., 2003; Jiang et al., 
2011; El-Akabawy et al., 2012). Various experiments have 
aimed to enhance the therapeutic effects of NSCs, including 
multitract implantation, optimization of transplantation timing, 
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Study Design Cell sources HD models Route of administration Outcomes Therapeutic effects Articles 

In vivo rNSCs, rBM-

MSCs 

QA-lesioned rat Intrastriatal implantation Stem cell factor (SCF) in situ induces graft 

migration and proliferation 

SCF facilitates graft 

transplantation 

 (Bantubungi et al., 2008) 

hNSCs QA-lesioned rat Bilateral intrastriatal 

implantation 

MSNs and GABAergic neurons with BDNF 

expression 

Behavior function 

Endogenous neurogenesis/angiogenesis 

Glial scar, Inflammation ( M2 microglia) 

Neural replacement, BDNF 

secretion, Endogenous 

neurogenesis, anti-

inflammation 

 (Yoon et al., 2020b) 

QA-lesioned rat Single-dose intravenous 

administration 

IV NSCs migrate to lesions 

Behavioral function 

Striatal atrophy 

Neural replacement, NGF 

secretion 

 (Lee et al., 2005) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Immature neurons 

Motor function  

Striatal volume 

Neurotrophic factor more 

than neural replacement 

 (McBride et al., 2004) 

R6/2 and Q140-

knock-in mouse 

Bilateral intrastriatal 

implantation 

Neurons and astrocytes 

Motor, cognitive, behavioral function 

BDNF expression 

mHTT accumulation  

Neuronal replacement, BDNF 

secretion, mHTT 

clearance/formation inhibition 

 (Reidling et al., 2018) 

zQ175 mouse Bilateral intrastriatal  MSNs and interneurons 

Behavioral function 

BDNF levels 

mHTT accumulation 

Neural replacement, BDNF 

secretion, mHTT aggregation 

inhibition 

 (Holley et al., 2023) 

R6/2 mouse Bilateral intrastriatal  Clinical symptoms 

Poor neuronal differentiation/survival 

  (El-Akabawy et al., 2012) 

3-NP induced rat Unilateral intrastriatal 

implantation (prior to 3-NP) 

Motor function 

Striatal neuron damage 

(Transplantation after 3-NP is ineffective) 

BDNF secretion  (Ryu et al., 2004) 

rNSCs 3-NP induced rat Bilateral intrastriatal 

implantation 

Learning ability 

Motor coordination 

Striatal neuronal loss 

Neuronal replacement  (Roberts et al., 2006) 

mNSCs QA-lesioned 

mouse, R6/2 

mouse 

Unilateral intrastriatal 

implantation; at 2, 7, and 

14 days after QA lesioning; 

either neurospheres or 

suspension 

Graft survival rate in early 

transplantation of neurospheres 

Delayed gliosis  

BDNF level 

  (Johann et al., 2007) 

 

 

 

 

 

YAC128 mouse Bilateral intrastriatal 

implantation 

MSN differentiation 

Motor function 

BDNF and BDNF receptors (TrkB) levels 

Neuronal replacement, BDNF 

neurotrophic effect 

 (Al-Gharaibeh et al., 2017) 

Human fetal 

WGE, LGE, MGE 

tissues 

QA-lesioned rat Intrastriatal implantation Graft from LGE and MGE of young fetus 

(E14) yield more functional recovery than 

older fetus 

Neuronal replacement  (Watts et al., 1999) 

Rat fetal WGE 

tissue 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Environmental enrichment  motor 

function, BDNF, neural spines and cell 

volume  

 

Neuronal replacement and 

BNDF neurotrophic effect 

 (Döbrössy and Dunnett, 2006) 

QA-lesioned rat Unilateral intrastriatal 

implantation, either 

multitract or single tract 

Multitract implantation  MSNs 

differentiation (host factors/inflammation) 

No functional difference 

Neuronal replacement  (Jiang et al., 2011a) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Microtransplantation  MSNs, Motor 

function, GFAP expression 

Neuronal replacement  (Zhu et al., 2013) 

Rat and human 

fetal WGE 

tissues 

QA-lesioned rat Unilateral intrastriatal 

implantation 

rWGE yields more MSNs but less motor 

recovery than hWGE 

Neuronal replacement  (Lelos et al., 2016) 

Human fetal 

WGE cells 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Xenografts migrate, differentiate into 

neurons and astrocytes 

Neuronal replacement  (Hurelbrink et al., 2002) 

Rat fetal LGE 

cells 

QA-lesioned rat Unilateral striatal 

implantation 

Graft volume is not linearly correlated 

with MSNs ratio, survival, and graft size 

(optimal limit) 

Neuronal replacement  (Watts et al., 2000) 

Table 2. Neural Stem Cells (NSCs)
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Mouse fetal LGE 

cells 

YAC128 mouse Bilateral intrastriatal 

implantation 

Grafts are well vascularized Neuronal replacement  (Cisbani et al., 2014) 

Human fetal 

striatal cells 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Graft hibernation does not affect graft 

survival and striatal differentiation 

Neuronal replacement  (Hurelbrink et al., 2003) 

Rat, mouse, and 

human fetal 

striatal cells 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Xenograft’s migration range depend on 

donor adult brain size 

Neuronal replacement  (Hurelbrink and Barker, 2005) 

Rat fetal striatal 

cells 

KA-lesioned rat Bilateral intrastriatal 

implantation 

Motor function Neuronal replacement  (Deckel et al., 1983) 

IA-lesioned 

baboon 

Unilateral intrastriatal 

implantation 

Immunological rejection  reappearance 

of abnormal movements 

Chorea symptom (only striatal graft) 

Neuronal replacement, 

neurotrophic factors 

 (Hantraye et al., 1992) 

GDNF-

expressing 

NSCs 

QA-lesioned 

mouse 

Bilateral/unilateral 

intrastriatal implantation 

Motor function 

Striatal neuron degeneration 

Grafts grow more in the lesion than 

normal brain 

Neuronal replacement, GDNF 

secretion 

 (Pineda et al., 2007) 

hNGF-secreting 

NSCs 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Cholinergic fibers from basal forebrain 

Lesion size 

Striatal neuron loss 

NGF secretion  (Kordower et al., 1997) 

Clinical trials 

Human fetal LGE tissue Bilateral intrastriatal 

implantation 

Cognitive functions Neurotrophic factors and 

neurotransmitter 

replenishment 

 (Philpott et al., 1997) 

Bilateral intrastriatal 

implantation 

Grafts survived with striatal phenotype, 

integrated with hosts 

no mHTT aggregation 

Neuronal replacement  (Freeman et al., 2000) 

Bilateral intrastriatal 

implantation 

Motor function 

Cognitive function  

Neuronal replacement  (Kopyov et al., 1998) 

Bilateral intrastriatal 

implantation 

Poor integration 

No change in clinical symptoms 

Neuronal replacement, 

neurotrophic factors 

 (Keene et al., 2007) 

Bilateral intrastriatal 

implantation 

Striatal D2 receptor binding  

Clinical function (varied) 

Neuronal replacement  (Reuter et al., 2008) 

Human fetal WGE tissue Bilateral intrastriatal 

implantation 

Anti-HLA Ab 

HD symptoms 

Disease progression 

   (Krebs et al., 2011) 

Bilateral intrastriatal 

implantation 

Motor/cognitive function (temporary and 

varied) 

Metabolic activity 

Anti-HLA Ab  

Same disease progression 

Neuronal replacement  (Bachoud-Lévi et al., 2000a; 

Bachoud-Lévi et al., 2000b; 

Bachoud-Lévi et al., 2006; 

Bachoud-Lévi et al., 2020) 

Bilateral intrastriatal 

implantation 

 No change in motor function and 

disease progression 

Neuronal replacement  (Barker et al., 2013) 

Bilateral intrastriatal 

implantation 

immature mitotic neuroepithelial cells Neuronal replacement  (Capetian et al., 2009) 

Bilateral intrastriatal 

implantation 

Stable overgrowth mass 

Brain metabolism 

Motor/cognitive function (temporary)  

Cognitive decline rate 

Anti-HLA Ab 

Neuronal replacement, 

neurotrophic factors 

 (Gallina et al., 2010; Gallina et 

al., 2014; Gallina et al., 2008) 

Bilateral intrastriatal 

implantation 

Cortical metabolism 

Clinical symptoms 

Neuronal replacement  (Gaura et al., 2004) 

Bilateral intrastriatal 

implantation 

Anti-HLA Ab Neuronal replacement  (Porfirio et al., 2015) 

Human fetal lateral ventricular 

eminence tissue 

 

Bilateral intrastriatal 

implantation 

Host atrophic astrocytes 

Graft large blood vessels 

Graft astrocytes and gap junctions  

Subdural hemorrhage 

  (Cisbani et al., 2013) 

Bilateral intrastriatal 

implantation 

No significant change in motor function 

Subdural hemorrhage 

Neuronal replacement, 

possible neurotrophic support 

 (Hauser et al., 2002) 

Human fetal striatal cells Unilateral intrastriatal 

implantation 

No change in disease progression Neuronal replacement  (Rosser et al., 2002) 

Table 2. Neural Stem Cells (NSCs) (Continued)
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exploration of NSC sources, and graft storage impact (Watts 
et al., 1999; Hurelbrink et al., 2003; Hurelbrink and Barker, 
2005; Johann et al., 2007; Kelly et al., 2007; Lelos et al., 2016). 
Pineda et al. (2007) and Kordower et al. (1997) engineered 
NSCs to overexpress glial cell line-derived neurotrophic factor 
(GDNF) and human nerve growth factor (NGF), achieving 
rescue of striatal degeneration and improvement in motor 
functions (Kordower et al., 1997; Pineda et al., 2007).
     Clinical trials of stem cell therapy in HD have primarily 
involved fetal striatal tissue transplantation, with neurons 
derived from the WGE and SVZ harvested from elective 
abortions. The first pilot study of cellular transplantation in 
HD patients occurred in 1995 (Madrazo et al., 1995), with 
subsequent trials conducted in locations including Cuba, 
Czechoslovakia, the United Kingdom, Florida, California, and 
France. These trials generally reported improved cognitive 
and motor functions, brain metabolic activity, and disease 
progression rates. Post-mortem analysis also indicated robust 
graft survival, striatal neuron differentiation, and host-brain 
integration (Freeman et al., 2000). Nevertheless, some studies 
have shown that the benefits of neural stem cell therapy can 
be temporary (Bachoud-Lévi et al., 2006; Gallina et al., 2014) 
or even yield no significant improvement (Hauser et al., 2002; 
Keene et al., 2007; Barker et al., 2013; Bachoud-Lévi et al., 
2020), underscoring the importance of long-term follow-up 
and alternative regimens that allow for continuous treatment. 
Despite the therapeutic effects of stem cell transplantation, 
several studies have reported complications, including the 
development of anti-human leukocyte antibodies antibodies 
leading to encephalitis and graft dysfunction, as well as 
concerns about the tumorigenesis potential of stem cells, with 
some patients developing overgrowing masses causing clinical 
deterioration (Krystkowiak et al., 2007; Gallina et al., 2008; 
Keene et al., 2009; Gallina et al., 2010; Krebs et al., 2011; 
Gallina et al., 2014; Porfirio et al., 2015; Bachoud-Lévi et al., 
2020). Cisbani et al. (2013) reported that fetal striatal tissue 
transplantation decreased blood vessels, astrocytes, and gap 
junctions in grafts, raising concerns about impaired blood-
brain barrier integrity resulting from stem cell therapy. Despite 
a well-established protocol for intrastriatal implantation, some 
patients have experienced procedural complications, such 
as subdural hemorrhage and infection, highlighting the need 
for careful consideration of these risks (Bachoud-Lévi, 2017; 
Cisbani et al., 2013).

Neural Progenitor Cells (NPCs)
NPCs correspond to brain progenitor cells responsible for 
generating glial and neuronal cells. Unlike NSCs, NPCs do not 
give rise to non-neural cells. Numerous in vivo studies have 
utilized NPCs derived from ESCs, iPSCs, or fetal brain 
tissue, demonstrating that NSC transplantation can improve 
clinical manifestations of HD, reduce neuroinflammation and 
mHTT accumulation, and enhance MSN differentiation (Aubry 
et al., 2008; Vazey et al., 2010; Nicoleau et al., 2013; Park et 
al., 2021; Park et al., 2022; Schellino et al., 2023). Various 
protocols have been employed to augment the therapeutic 
effects of NPCs, including priming with lithium chloride (LiCl) 
(Vazey and Connor, 2010), noggin priming (Vazey et al., 2010), 
combination therapy (Lee et al., 2006), graft forms (Johann 
et al., 2007; Kelly et al., 2007), and routes of administration 
(Lee et al., 2006). A study by Lee et al. (2006) compared 
intraventricular injection to intravenous administration of 
human NPCs in a QA-lesion rat model. They found that both 
methods effectively facilitated graft migration to the lesioned 
striatum, with the intravenous route resulting in higher graft 
density. However, concerns about tumorigenesis arose from 
detecting transplanted cells in other organs following systemic 
injection, underscoring the need for long-term observation. 
While some studies have explored NPCs as vehicles for gene 
therapy (Cho et al., 2019), such applications fall outside the 
scope of this review.

Glial Progenitor Cells (GPCs)
GPCs have received comparatively less attention than neural 
lineages in HD research. To date, only one study has focused 
on glial progenitor cells derived from hESCs. Following 
transplantation into HD chimera mice, the grafts rescued 
electrophysiological and behavioral phenotypes, maintained 
potassium homeostasis, decelerated disease progression, and 
improved survival rates (Benraiss et al., 2016). Since the 
pathology of HD might involve neuroinflammation, glia and 
GPCs-based therapy may be worth exploring to gain a complete 
understanding of HD pathogenesis and treatment. 

iPSCs
Fibroblast-derived iPSCs represent a viable source for 
stem cell therapy in HD. Studies involving intrastriatal and 
intraventricular implantation of these iPSCs across various 
mouse models have reported enhancements in motor and 
cognitive functions, metabolic activity, levels of neurotrophic 

Bilateral intrastriatal 

implantation 

Striatal/cortical metabolism 

Motor function 

Cognitive decline rate 

Neuronal replacement  (Paganini et al., 2014) 

Bilateral intrastriatal 

implantation 

 

Graft survived long-term and connected 

with cortical neurons 

mHTT aggregated in graft extracellular 

matrix 

Neuronal replacement, 

neurotrophic factors 

 (Cicchetti et al., 2009; 

Cicchetti et al., 2014) 

Bilateral intrastriatal 

implantation 

Stable graft size   (Mascalchi et al., 2014) 

Bilateral intrastriatal 

implantation 

Inflammation 

mHTT aggregrated in grafts 

Neuronal replacement  (Maxan et al., 2018) 

Human fetal neurons  Bilateral intrastriatal 

implantation 

Grafts differentiated into neuron Neuronal replacement  (Ross et al., 1999) 

Bilateral intrastriatal 

implantation 

Alloimmunization (encephalitis and graft 

dysfunction) 

  (Krystkowiak et al., 2007) 

Human fetal striatal cells, co-grafted 

with autologous sural nerve 

Bilateral intrastriatal 

implantation 

Overgrowing masses and ependymal cysts 

Clinical symptoms 

Neuronal replacement, 

neurotrophic factors 

 (Keene et al., 2009) 

 

Table 2. Neural Stem Cells (NSCs) (Continued)
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Table 3. Neural Progenitor Cells (NPCs) 
Study Design Cell sources HD model Route of administration Outcome Therapeutic effects Articles 

In vivo 

hNPCs QA-lesioned mouse Intrastriatal implantation ↑Behavioral function Neuronal replacement  (Ma et al., 2012) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Neuron differentiation 

Overgrowing graft 

Neuronal replacement  (Aubry et al., 2008) 

 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Environmental enrichment → ↑MSNs 

differentiation, ↑integration 

Neuronal replacement, BDNF 

effect 

 (Schellino et al., 

2023) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

↑Sensorimotor function 

↓Neuroinflammation 

Neuronal replacement, 

neurotrophic factors 

 (Besusso et al., 

2020) 

QA-lesioned rat Bilateral intrastriatal 

implantation 

Noggin priming → ↑Neuronal 

differentiation 

Hyperplastic mass 

Neuronal replacement  (Vazey et al., 2010) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Inhibition of Wnt-signaling → 

↑telencephalic specification 

Neuronal replacement  (Nicoleau et al., 

2013) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

↑Behavioral function Neuronal replacement  (Song et al., 2007) 

R6/2 mouse Bilateral intrastriatal 

implantation 

↑Motor coordination 

↑Survival rate 

↓Disease progression 

Neuronal replacement, 

neurotrophic factors 

 (Adil et al., 2018) 

YAC128 mouse Bilateral intrastriatal 

implantation 

↑Motor and cognitive functions 

↑DARPP-32, synaptophysin, myelin basic 

protein  

↑Astrocyte function 

↓Reactive astrocyte differentiation 

↓mHTT expression 

Neuronal replacement, 

neurotrophic factors, gene 

therapy targeting an 

elongation factor 

 (Park et al., 2021; 

Park et al., 2022) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

↑Trace memory Neuronal replacement, 

neurotrophic factors 

 (Stavrovskaya et al., 

2018) 

3-NP induced rat Bilateral intrastriatal 

implantation 

↑Locomotor activity 

↑Behavioral function 

Neuronal replacement, 

neurotrophic factors 

 (Stavrovskaya et al., 

2017) 

QA-lesioned 

rat/hNPCs 

Unilateral intrastriatal 

implantation 

↑Behavioral function ↑Neural 

replacement 

↑Endogenous neurogenesis 

↑Neuronal connections 

↓Inflammation 

Neuronal replacement, 

immune modulation 

 (Yoon et al., 2020a) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

↑Behavioral function 

↓mHTT aggregate formation  

When add proteasome inhibitor (MG132) 

or examine at older age, HD pathology 

emerged 

Neuronal replacement, 

neurotrophic factors 

 (Jeon et al., 2012) 

QA-lesioned rat Intrastriatal implantation ↑Motor functions  

↑Survival rates 

Neuronal replacement  (Bosch et al., 2004) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Graft survived, differentiated to neurons 

with consistent morphology 

Neuronal replacement  (Armstrong et al., 

2000) 

QA-lesioned rat Either unilateral 

intraventricular injection or 

intravenouse injection 

(Intravenous injection) 

↑Graft density around necrotizing cavities 

and vessels 

Neuronal replacement  (Lee et al., 2006) 

 

 

 

rNPCs QA-lesioned rat Unilateral intrastriatal 

implantation 

↑Motor function 

 

Neuronal replacement, 

neurotrophic factors 

 (Vazey et al., 2006) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

LiCl priming → ↑neuronal differentiation, 

↑efferent projections, ↑sensorimotor 

function, ↓gliogenesis 

Neuronal replacement, 

neurotrophic factors 

 (Vazey and Connor, 

2010) 

 

 

 

 

 

QA-lesioned rat Unilateral intrastriatal 

implantation 

↑Brain metabolism  

No motor improvement 

Improved glucose 

metabolism but no clear 

evidence of neuronal 

replacement 

 (Visnyei et al., 2006) 

mNPCs R6/2 mouse Unilateral intraventricular 

implantation 

↑Lifespan 

↑Motor function 

↓Ubiquitin /polyQ aggregation 

↓Striatal volume 

Neuronal replacement, 

neurotrophic factors 

 (Yang and Yu, 2009) 

QA-lesioned mouse Intrastriatal implantation Grafts survived and did not form tumors Neuronal replacement  (Dihné et al., 2006) 

hNPCs, mNPCs, 

human and 

mouse striatal 

tissue 

QA-lesioned mouse Unilateral intrastriatal 

implantation at 2, 7, and 14 

days after QA lesioning, using 

either intact neurospheres or 

dissociated cell suspensions 

Differentiation is independent of the 

immunogenic background but relied on 

cell source 

Neuronal replacement  (Kelly et al., 2007) 
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factors,  as well  as reductions in mHTT aggregation, 
inflammation, striatal atrophy, and ventriculomegaly (Jeon et 
al., 2012; Fink et al., 2014; Jeon et al., 2014; Mu et al., 2014; 
Mu et al., 2016). 

Embryonic Stem Cells (ESCs)
Compara t ive ly  few s tudies  have  u t i l i zed  ESCs for 
transplantation. To date, only two experiments have been 
conducted with ESCs. Bernreuther et al. (2006) performed 
the first study in 2006, intrastriatally implanting murine L-1 
expressing ESCs into QA-lesioned mice. They found active 
graft migration, an increase in GABAergic neurons, and 
temporary behavioral rescue. Islam et al. (2021) conducted 
another study using human ESCs transplanted into an HTT 
knock-in mouse model and observing improved behavioral 
function. 

Mesenchymal Stem Cells (MSCs)
MSCs, widely researched for their therapeutic potential, are 
derived from various tissues such as the adipose, bone marrow, 
umbilical cord, dental pulp, and olfactory sheath. Research 
has consistently shown that MSCs, similar to other stem 
cells, can ameliorate behavioral and memory dysfunctions, 
mHTT aggregation, striatal atrophy, ventriculomegaly, and 

enhance neurotrophic factors (Lescaudron et al., 2003; Lee 
et al., 2009; Edalatmanesh et al., 2012; Moraes et al., 2012;  
Sánchez et al., 2018; Yu-Taeger et al., 2019). Several injection 
routes have been explored, including intranasal, intravenous, 
intrastriatal, and intraventricular. Elbaz et al. (2019) reported 
positive outcomes from combining intravenous MSCs with 
intraperitoneal lercanidipine in 3-nitropropionic acid (3-NP) 
induced rats. The number of cell passages is a critical factor 
for graft viability, as shown by Fink et al. (2013), where high-
passage MSCs reduced pathological deficits and temporarily 
improved memory function. Wenceslau et al. (2022) found that 
a single high dose of intravenous human immature dental pulp 
stem cells significantly increased brain-derived neurotrophic 
factor (BDNF) levels and DARPP-32 positive neurons 
compared to a triple low-dose regimen.  Lastly, some stem cells 
are engineered to overexpress neurotrophic factors. Engineering 
stem cells to overexpress neurotrophic factors like BDNF 
and GDNF enhanced their therapeutic effects by improving 
neurogenesis, lifespan, and disease phenotypes (Sadan et al., 
2008; Dey et al., 2010; Sadan et al., 2012; Zimmermann et al., 
2016). 
     Unlike NSCs and NPCs, only a few clinical trials of MSCs 
in HD patients exist. Human dental pulp stem cells have 
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Table 7. Mesenchymal Stem Cells (MSCs)

Study 

Design 
Cell sources HD model 

Route of 

administration 
Outcome Therapeutic effects Articles 

In vivo hADSCs QA-lesioned 

mouse 

Unilateral intrastriatal 

implantation 

Motor function 

Striatum atrophy 

Neurotrophic factors  (Hosseini et al., 

2014) 

QA-lesioned rat 

and R/2 mouse 

Unilateral/bilateral 

intrastriatal 

implantation 

Motor function 

Akt/cAMP-response 

element-binding 

proteins pathway 

Lesion volume 

Striatal apoptosis 

mHTT aggregate 

Neurotrophic factors  (Lee et al., 2009) 

YAC128 mouse Bilateral intrastriatal 

implantation 

Striatal atrophy  

No improvement in 

motor function 

Neurotrophic factors  (Im et al., 2010) 

mBM-MSCs R6/2 mouse Intrastriatal 

implantation 

High passage MSCs 

  Motor function 

Neurotrophic factors  (Rossignol et al., 

2015) 

R6/2 mouse Intranasal 

administration 

Survival rate 

Dopamine signaling 

Circadian disruption  

Inflammation 

Neurotrophic factors, 

inflammatory modulation 

 (Yu-Taeger et al., 

2019) 

N171-82Q HD 

mouse 

Intranasal 

administration 

Survival rate 

Motor function 

Genes in trophic, 

antioxidant, anti-

apoptosis, 

cytokine/chemokine 

receptor migration, 

mitochondrial energy 

metabolism, and 

stress response 

signaling pathways  

Striatal neuronal loss 

mHTT aggregates 

Neurotrophic factors  (Linares et al., 

2016) 

QA-lesioned rat 

YAC128 and 

BACHD mouse/ 

Retro-orbitally injection Cortical synapses 

Serum IL-6, IL-10, 

CXCL1, and IFN-  

Behavioral function 

Brain pathology 

Neurotrophic factors  (Wanda et al., 

2012) 

rBM-MSCs, 

rNSCs 

HD 51CAG 

transgenic rat 

Bilateral intrastriatal 

implantation 

MSCs have weaker 

immune response  

long-term benefit 

MSCs modify local 

environment for NSCs 

differentiation and 

reduce immune response 

 (Rossignol et al., 

2014) 

rBM-MSCs QA-lesioned rat Unilateral intrastriatal 

implantation 

Working memory 

Poor differentiation 

Neurotrophic factors  (Lescaudron et al., 

2003) 

QA-lesioned rat  Unilateral intrastriatal 

implantation 

Motor function 

Glutamate 

concentration 

Neurotrophic factors  (Sánchez et al., 

2018) 

QA-lesioned rat/ Unilateral intrastriatal 

implantation 

FGF-2 

Neuron 

degeneration 

Ventriculomegaly 

Neurotrophic factors  (Moraes et al., 

2012) 

QA-lesioned 

rat/rBM-MSCs 

Unilateral intrastriatal 

implantation 

Motor function 

Striatal atrophy 

Neurotrophic factors  (Jiang et al., 2011b) 

QA-lesioned 

rat/rBM-MSCs 

Unilateral intrastriatal 

implantation 

Lateral ventricle 

enlargement 

Striatal atrophy 

Neuronal replacement, 

neurotrophic factors 

 (Amin et al., 2008) 
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Table 7. Mesenchymal Stem Cells (MSCs) (Continued)
QA-lesioned 

rat/rBM-MSCs 

Unilateral intrastriatal 

implantation 

BDNF levels  BDNF secretion  (Serrano Sánchez 

et al., 2014) 

QA-lesioned 

rat/rBM-MSCs 

Single dose intravenous 

injection 

Motor function 

Cognitive function 

Neurotrophic factors  (Edalatmanesh et 

al., 2010) 

3-NP induced 

rat/rBM-MSCs 

Bilateral intrastriatal 

implantation 

Behavioral function 

BDNF, collagen type 

I, and fibronectin  

Lateral ventricles 

enlargement  

No neural 

differentiation 

Neurotrophic factors  (Rossignol et al., 

2011) 

3-NP induced 

rat/rBM-MSCs 

Single dose intravenous 

MSCs with daily 

intraperitoneal 

lercanidipine 

Combined therapy  

Motor and behavior 

function  

BDNF, FOXP3, Wnt, 

and -catenin  

Striatum tissue injury 

Striatal cytosolic 

Ca2+, CaN, tumor 

necrosis factor-alpha, 

NFATc4 expression, 

and the Bax/Bcl2 ratio 

Modulation of the Ca/ 

calcineurin/NFATc4 and 

Wnt/ -catenin signalling 

pathways 

 

 (Elbaz et al., 2019) 

hBM-MSCs QA-lesioned 

mouse and R6/2 

mouse 

Unilateral intrastriatal 

implantation 

Motor function 

Survival rate  

Microglia and 

neuroblasts 

Motor impairment 

Neurotrophic factors  (Lin et al., 2011) 

N171-82Q mouse Unilateral intrastriatal 

implantation 

Endogenous NSCs 

proliferation/differenti

ation 

NTFs signaling  

Striatal atrophy 

Grafts rapidly 

disappeared 

Neurotrophic factors, 

endogenous 

neurogenesis 

 (Snyder et al., 

2010) 

hUC-MSCs 

 

3-NP induced rat Bilateral intrastriatal 

implantation 

Motor function  

Dendritic length 

ROS protection 

Gliosis 

Striatal atrophy 

Neurotrophic factors  (Ebrahimi et al., 

2018) 

R6/2 mouse Intrastriatal 

implantation, either a 

low-passage (P3 to 8) 

or high-passage (P40 

to 50) 

Spatial memory 

(temporary) 

Pathological deficits 

No motor 

improvement 

Neurotrophic factors  (Fink et al., 2013) 

BACHD mouse Intravenous 

administration, 

combined with 

intraventricular 

antisense 

oligonucleotides (ASOs)  

AQP-4 M23 isoform  

Inflammation 

 

Neurotrophic factors, 

immunomodulation, 

glymphatic recovery 

 (Wu et al., 2020) 

hIDPSC 3-NP induced rat intravenously 

administered, either 

single high dose or 

three consecutive low 

doses with one-month 

intervals 

Single high dose 

regimen  BDNF, 

DARPP32, and D2R 

positive stained cells 

Neurotrophic factors  (Wenceslau et al., 

2022) 
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reached clinical phases I and II, including the SAVE-DH, 
ADORE-DH, and ADORE-EXT trials (Macedo et al., 2021). 
These trials indicated that intravenous dental pulp stem cells 
are well tolerated and lead to significant improvement in motor 
symptoms in moderate HD patients. The STAR trial, a phase 
III clinical trial, is currently ongoing. The PRE-CELL trial 
from the University of California Davis is exploring engineered 
MSCs to overexpress BDNF in early HD patients (Wheelock et 
al., 2016) but is still in the participant recruitment stage. 
     Two primary mechanisms in neural stem cell transplantation 
for HD amelioration have been identified: the secretion of 
neurotrophic molecules and neural replacement. Previous 
studies have found that neural stem cells secrete various 
neurotrophic factors, such as NGF, BDNF, GDNF, and ciliary 
neurotrophic factor (CNTF), which enhance endogenous 
neurogenesis and reduce neuroinflammation, a key pathogenesis 
of HD (Conforti et al., 2018). The goal of neural replacement 
is to reconstruct the damaged striatum, focusing on the MSNs 
of the caudate/putamen, the primary neuronal population 
degenerating in HD (Ferrante et al., 1985). Research has 
convincingly shown MSN differentiation and integration into 
host brain circuits, indicating their regenerative potential. 
Furthermore, MSCs are free from ethical concerns, unlike ESCs 

and other fetal tissues (Kim and Park, 2017). However, possible 
complications highlight the need for further safety profile 
development.

Extracellular Vesicles (EVs)
Multiple studies have explored the use of culture media from 
healthy cells to reverse HD phenotypes in vitro, highlighting the 
potential of EVs as cell-free alternatives to stem cell therapy. 
Human fibroblast-derived EVs increase GABAergic synapses 
and transmission when added to culture media of HD iPSCs 
and neurons (Beatriz et al., 2021; Beatriz et al., 2023). Culture 
media from NSCs and NPCs mitigates mHTT aggregation 
and prevents neuronal apoptosis in HTT knock-in cell models 
(Heon-Chang et al., 2008; Ma et al., 2012). Furthermore, EVs 
from adipose tissue-derived stem cells (ADSCs) improve 
mitochondrial function, phospho-cAMP response element-
binding protein, and PGC-1α expression alongside disease 
phenotypes (Lee et al., 2009; Lee et al., 2016).
     In vivo studies further affirm the positive impacts of EVs. 
Lee et al. (2021) conducted an experiment that established a 
surgical connection of blood circulation between young wild-
type mice, old wild-type mice, and R6/2 HD mouse models. 
This simulated parasymbiosis demonstrated that blood 
serum from young healthy mice could enhance survival rates 

Table 7. Mesenchymal Stem Cells (MSCs) (Continued)
DPSCs 3-NP induced rat Bilateral intrastriatal 

implantation 

Motor function  

Striatal atrophy 

Glial proliferation 

Inflammatory 

Caspase-3 

Neurotrophic factors, 

immunomodulation 

 (Eskandari et al., 

2021) 

hOE-MSCs 3-NP induced rat Bilateral intrastriatal 

implantation 

Locomotor activity  

Motor coordination 

Striatal atrophy 

RIP3 and TNF  

Neurotrophic factors  (Bayat et al., 2021) 

BDNF-

secreting 

MSCs 

QA-lesioned, R6/2 

and N171-82Q 

mouse 

Unilateral intrastriatal 

implantation 

Motor function Neurotrophic factors  (Zimmermann et 

al., 2016) 

NTFs-

secreting 

rBM-MSCs 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Graft migrated, 

differentiated into 

neurons and 

astrocytes 

NTFs secretion 

Neurotrophic factors  (Sadan et al., 2008) 

BDNF/NGF-

secreting 

mBM-MSCs 

YAC128 mouse Bilateral intrastriatal 

implantation 

Motor function 

Neuronal loss 

Neurotrophic factors  (Dey et al., 2010) 

QA-lesioned rat Unilateral intrastriatal 

implantation 

Behavioral function 

Striatal atrophy 

Neurotrophic factors  (Sadan et al., 

2012b) 

BDNF/GDNF

-secreting 

hBM-MSCs 

QA-lesioned rat Intracerebral 

implantation posterior 

to the thalamus 

Graft migrated to the 

lesion 

Neurotrophic factors  (Sadan et al., 2009) 

R6/2 mouse Bilateral intrastriatal 

implantation 

Late transplantation 
  

Motor function 

(temporary) 

Lifespan 

Neurotrophic factors  (Sadan et al., 

2012a) 

BDNF-

secreting 

BM-MSCs 

YAC128 and R6/2 

mouse 

Bilateral intrastriatal 

implantation 

Neurogenesis 

Lifespan 

Striatal atrophy  

Anxiety  

Neurotrophic factors  (Pollock et al., 

2016) 

YAC 128 and R6/2 

mouse 

Intrastriatal 

implantation 

Neurogenesis 

Lifespan 

Striatal atrophy  

Anxiety  

Neurotrophic factors  (Wheelock et al., 

2016) 
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and mitochondrial function while reducing HD symptoms, 
phenotypes, and cell death (Lee et al., 2021). Extracts from 
MSCs and ASCs improved disease activity and motor function 
in the R6/2 mouse model (Im et al., 2013; Giampà et al., 2019).  
Joshi et al. (2021) advanced this approach by engineering NSCs 
to overexpress DNAJB6. Post-intrathecal administration of 
NSCs-derived small EVs in R6/2 mice resulted in decreased 
mHTT aggregation, a benefit also observed in HTT-Q74 
transfected cells (Joshi et al., 2021). 
     The clinical trial landscape for EV therapy in HD is still in 
its infancy, with only an observational study by the University 
of Central Florida investigating the role of EVs as blood-based 
biomarkers for brain HTT, aiming for application in future 
HTT-lowering clinical trials (NCT06082713, 2023). 
     EVs exhibit several properties that make them particularly 

suitable for treating neurodegenerative diseases (D'Egidio et 
al., 2024). Firstly, EVs can naturally traverse the blood-brain 
barrier thanks to their phospholipid composition (Alvarez-Erviti 
et al., 2011). EVs can also protect their cargo from enzymatic 
degradation, ensuring that therapeutic molecules remain 
biologically active upon reaching their target cells. Secondly, 
EVs demonstrate low immunogenicity and toxicity. They can 
be administrated intravenously, significantly reducing the risk 
of procedural complications. Additionally, the potential for 
tumor growth is minimized because EVs primarily facilitate 
the delivery of neurotrophic factors instead of actual stem cells. 
Lastly, EVs can be specifically engineered to target distinct cells 
or tissues, thereby increasing the specificity and effectiveness of 
the treatment. These benefits set EV therapy apart from direct 
stem cell transplantation, presenting a cell-free option that 

Table 8. Extracellular Vesicles  

Study 

Design 
EV sources HD model 

Route of 

administration 
Outcome Therapeutic effects Articles 

In vitro 

HDF-EVs/CM HD human dermal 

fibroblast-derived iPSCs 

Added in culture 

media 

GABAergic synapses 

and transmission 

Neurotrophic factors  (Beatriz et al., 

2023) 

HD iPSCs-derived 

MSNs 

Added in culture 

media 

GABAergic currents Neurotrophic factors  (Beatriz et al., 

2021) 

HD iPSCs-derived 

GABAergic neurons 

Added in culture 

media 

GABAergic 

transmission 

Neurotrophic factors 

 

 (Beatriz et al., 

2022) 

Blood serum of 

young and old 

WT mice 

R6/2 mouse SVZ-

derived NSCs 

Added in culture 

media 

mHTT aggregation 

Cell death 

Cell proliferation 

Neurotrophic factors  (Lee et al., 

2021) 

hNPCs-CM mHTT-transfected 

cerebral hybrid neurons 

(A1) 

Added in culture 

media 

Inclusions 

N-terminal cleavage 

Annexin-V+PI+ and 

Annexin-V+PI  

neurons 

Neurotrophic factors  (Heon-Chang 

et al., 2008) 

DNAJB6-enriched 

NSCs-EVs 

HTT-Q74-RFP/EGFP 

transfected HEK293T 

cells 

Added in culture 

media 

mHTT aggregation Neurotrophic factors 

Neurotrophic factors 

 (Joshi et al., 

2021) 

hADSCs-CM mHTT-transfected 

cerebral neuroblastoma 

Added in culture 

media 

PGC-1 expression 

N-terminal mHTT 

Apoptosis 

Neurotrophic factors  (Lee et al., 

2009) 

ADSCs-exosome R6/2 mouse derived 

NSCs 

Added in culture 

media 

Mitochondrial 

function 

Phospho-CREB and 

PGC-1  

mHTT aggregates 

Cell apoptosis 

 Neurotrophic factors  (Lee et al., 

2016) 

In vivo 

Blood serum of 

young and old 

WT mice 

R6/2 mouse Surgically connected 

parabiosis between 

mice 

Survival rate 

Mitochondria function 

Cognitive function 

Cleaved caspase-3 

Weight loss 

mHTT aggregation 

Cell death 

Neurotrophic factors  (Lee et al., 

2021) 

DNAJB6-enriched 

NSCs-EVs 

R6/2 mouse Intrathecally weekly 

for 3 times 

mHTT aggregation Neurotrophic factors, 

gene therapy 

(DNAJB6 inhibit mHTT 

aggregration) 

 (Joshi et al., 

2021) 

ADSCs-EVs R6/2 mouse Intraperitoneally, two 

times a week for 6 

weeks 

Motor function 

CREB-PGC-1

pathway 

Weight loss  

Striatal atrophy 

mHTT aggregation  

Neurotrophic factors  (Im et al., 

2013) 

hAMSCs R6/2 mouse daily intraperitoneal 

injection, 6 days a 

week for 9 weeks 

Motor function 

Striatal atrophy 

Inclusions 

Microglia activation 

BDNF level 

Immunomodulation  (Giampà et al., 

2019) 
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reduces risks inherent in cell-based therapies while leveraging 
the advantageous effects of stem cell secretomes.

Conclusion
HD represents a profound neurological challenge, currently 
without effective treatment options. Cell and EV therapies 
have emerged as promising avenues as treatment for 
neurodegenerative diseases such as Alzheimer’s disease 
(Duan et al., 2023; Garcia-Contreras et al., 2023), Parkinson’s 
disease (Upadhya et al., 2021; Shastry et al., 2023), multiple 
sclerosis (Islam et al., 2023; Barabadi et al., 2024), and stroke 
(Park et al., 2020; Zhao et al., 2023). In the HD context, 
these approaches can potentially shift the focus from mere 
symptomatic relief to a reversal of HD. The literature of the 
last decades depicts the effects of cell therapy in HD models 
well, describing the complex interconnection between stem 
cell properties and the cellular and molecular contexts in the 
recipient. Indeed, the content of the stem cell secretome can 
positively modulate the diseased environment, causing, for 
instance, reduced oxidative stress, eventually via mitochondrial 
transfer, and neuroinflammation via secretion of inflammatory 
mediators that also potentially impact the surrounding glial 
cells. Moreover, cell therapy can be exploited to improve 
neurogenesis, and eventually, the stem cell secretome can 
improve the functional and electrical integration of neuronal 
cells. However, cell therapy brings significant risks, including 
surgical complications, alloimmunization, and the development 
of overgrowing masses, highlighting the necessity for safer 
therapeutic alternatives. EV therapy offers a promising cell-
free alternative, potentially mitigating the risks associated with 
cell transplantation while leveraging the benefits of cellular 
communication for therapeutic purposes. In fact, EVs represent 
the principal actors mainly responsible for the assessed 
therapeutic effects within all the components of the stem cell 
secretome. Moreover, the possibility of optimizing engineered 
EVs as carriers of therapeutic molecules underscores their 
potential as therapeutic instruments in HD and beyond. 
Although there are many stem cell transplantation studies, 
clinical trials for EVs have not yet been performed. More 
studies of EVs' safety profile and efficacy in HD are needed 
before moving to the next stage.
     The journey towards effective treatments for HD is complex 
and requires further extensive research to address these gaps. 
As research continues, there is hope for developing therapies 
that can manage or even cure HD, offering new possibilities for 
those affected by this debilitating condition.
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